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1 Introduction

Suppose we observe n iid samples X1, X2, . . . , Xn on a sample space (X (n),X(n)). Assume the data is
generated from a distribution Pθ, where θ is the indexing parameter belonging to some metric space
(Θ, d) with d(·, ·) being the underlying metric. As Bayesians, we let Π to be a prior distribution
over the Borel sets of Θ. Now consider θ0 ∈ Θ to be the true data generating parameter. Write
Π(· | X(n)) as the posterior distribution. In what follows, we will be interested broadly in questions
of the form,

1. Is the posterior distribution consistent? In other words, how much mass does Π(· | X(n))
place on ‘small’ neighborhoods of θ0? (Need to formalize)

2. If consistent, then how fast does it converge? Or, can we say something about the size of
those neighborhoods? (Again, need to formalize)

3. What is the shape of the posterior distribution around θ0? (We won’t be discussing this.)

First, we try to collect the notions that we would need to define posterior consistency. An estimator
θ̂ is said to be consistent for θ) in frequentist sense if it gets arbitrarily close to θ0 as the sample size
increases with probability tending to one. Note that, we have two requirements in the definition of
consistency, namely, θ̂ gets arbitrarily close to θ and since θ̂ is random we want this closeness to
happen with high probability. In the Bayesian paradigm, we instead have the posterior distribution
and we would naturally want the posterior distribution to place its maximum mass to arbitrarily
small neighborhoods around θ0. These neighborhoods will play a central role in our development.
A δ-neighborhood/ball around θ0 in Θ is the set B = {θ ∈ Θ : d(θ.θ0) < δ}. Moreover, because the
posterior distribution is a random measure (function of the random data) we want this to happen
very frequently.

Definition 1.1. The posterior distribution Π(· | X(n)) is said to be (weakly) consistent if Π(d(θ, θ0) >

ε | X(n))→ 0 in P
(n)
θ0

-probability as n→∞ and for every ε > 0. Π(· | X(n)) is said to be (strongly)

consistent if Π(d(θ, θ0) > ε | X(n))→ 0 in P
(n)
θ0

-a.s. as n→∞ and for every ε > 0.

Typically, strong consistency needs more assumptions. Now suppose for a given data and a
prior Π, the posterior Π(· | X(n)) is consistent. Also assume d is convex. Then by Jensen’s
inequality the posterior mean

∫
θdΠ(θ | X(n)) is a consistent estimator of θ in the frequentist sense;

P
(n)
θ0

[d{
∫
θdΠ(· | X(n)), θ0} > ε] ≤ P (n)

θ0

∫
d(θ, θ0)dΠ(· | X(n))→ 0 due to consistency.

Theorem 1.2. (Doob) For any prior Π on Θd, the posterior is consistent, except possibly on a set
of Π-measure 0.
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Doob’s theorem says as long as a Bayesian is certain about the prior Π, she does not need
to worry about consistency. Add to this the fact that under fairly standard regularity conditions
on a finite dimensional parametric statistical model, we have by Bernstein-von-Mises theorem
that Π(· | X(n)) → N(θ̂, I−1

θ0
) where θ̂ is the maximum likelihood estimator (mle) and I−1

θ0
is the

inverse Fisher information matrix computed at θ0. Since the mle is known to be consistent, we get
posterior consistency. However, unless care is exercised posterior consistency might not obtain in
non-parametric problems for seemingly innocuous priors. David Freedman provided examples of
such peculiar behavior of the posterior. He also proved that while Doob’s set of parameter values
with inconsistent posterior might be small relative to Π but that set is not be ‘topologically’ small
in many statistical problems.

2 Posterior consistency in non-parametric problems

As discussed earlier, our main focus would be on non-parametric problems. To that end, let us
suppose that we have iid data X1, X2, . . . , Xn ∼ P ∈ P where P is some measure in the class
of probability measures P. Let us assume the true data generating distribution is P0 ∈ P. In
the absence of any indexing parameter, P itself is our parameter. Consider a prior Π over P.
The Dirichlet process prior is one popular example of a prior over the set of probability measures.
In order to talk about consistency, we would need some means of quantifying distances between
probability measures. In the following we assume p and q to be probability densities with respect
to some common dominating measure µ corresponding to probability measures P,Q ∈ P. Below
we define some of the common ways of measuring distance between probability densities.

1. Hellinger distance: h2(p, q) = 1
2

∫
(
√
p−√q)2dµ.

2. Total variation distance: || p− q ||TV= 1
2

∫
| p− q | dµ.

3. Kullback-Liebler (KL) divergence: D(p || q) =
∫
p log p

qdµ.

The KL divergence is not a metric because it is not symmetric in its arguments but it has a
very important role in Bayesian asymptotics as will be seen later. The Hellinger and total variation
distance are related by the following inequalities,

h2(p, q) .|| p− q ||TV. h(p, q), (1)

where a . b means a ≤ Cb for some constant C. The above inequality clearly indicates that
densities which are close in Hellinger sense are also close in total variation. There is also a famous
inequality due to Pinsker which basically says that the KL divergence is stronger than Hellinger
and total variation,

|| p− q ||TV≤
√

1

2
D(p || q) (Pinsker). (2)

Next, we will state a theorem due to Schwatrz. For that we first define what it means for a p0 ∈ P
to be in the KL support of the prior Π and move on to define a test function. These two will play
a crucial role in proving Schwartz’s result.

Definition 2.1. Fix p0 ∈ P. We say that p0 is in the KL support of Π, written as p0 ∈ KL(Π) if
for every ε > 0

Π{p ∈ P : D(p0, p) < ε} > 0

.
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Definition 2.2. A test function φn is a measurable function of the data defined as φn : X → {0, 1},
where X is the σ-field corresponding to the sample space.

Usually, test functions are of the form φn = 1 if X(n) ∈ R ⊂ X and 0 otherwise. Now we are
ready to state Schwartz’s theorem. The notation P X for a random variable X and probability
measure P means EP (X). In particular, for a test function φ, since it is either 1 or 0, P φ =
EP (φ) = P (R), where R is the rejection region of φ.

Theorem 2.3. (Schwartz) Assume that we have observed iid X1, X2, . . . , Xn | p ∼ p and p ∼ Π.
Let p0 ∈ P be the true data generating distribution. Suppose for every neighborhood U of p0 there
exists a constant C > 0, measurable sets Pn ⊂ P and tests φn such that,

1. p0 ∈ KL(Π) (prior does not miss p0 )

2. Π(P − Pn) < e−Cn (Pn covers most of P relative to Π),

3. Pn0 φn = EP0(φn) ≤ e−Cn and supp∈Pn∩Uc P
n(1 − φn) = supp∈Pn∩Uc EPn(1 − φn) ≤ e−Cn (

likelihood can separate p0 from other p’s in P),

then the posterior distribution Π(· | Xn) is strongly consistent at p0. Here P0 and P are probability
measures corresponding to densities p0 and p. Pn0 and Pn are the relative product measures.

Before providing a proof of this theorem we discuss the assumptions of Schwartz’s theorem.
To define a neighborhood we first need to specify a metric on P. As nothing is mentioned about
the choice of the metric, we can, for example, use the distances discussed above. The assumption
of existence of sets Pn is made since it is not always possible to construct tests for every p ∈ P.
The way around is that we construct tests for Pn and can ‘ignore’ P − Pn since it is small due to
assumption 2. Furthermore, these tests must have small error probabilities; Pn0 (φn) is the type-I
error and Pn(1− φn) is the type-II error. Finally, note that the only purely Bayesian condition is
assumption 1 where we are basically saying that p0 has some positive mass assigned by the prior.
In the proof, when we write p

q (X) for two densities p and q, we mean p(X)
q(X) .

Proof. Let us first choose a metric ρ on P and define U = {p ∈ P : ρ(p, p0) < ε} for a fixed ε > 0.
The posterior probability of Uc is then given by,

Π(Uc | X(n)) =

∫
Uc
∏n
i=1

p
p0

(Xi)dΠ(p)∫ ∏n
i=1

p
p0

(Xi)dΠ(p)
:=

Nn

Dn
. (3)

In view of the above display, we want to show Π(Uc | X(n))→ 0, P∞0 almost surely.
Step 1. We first analyze Dn. Let P0 = {p ∈ P : D(p0 || p) < ε}. Note that we always have the

following lower bound for Dn,

Dn ≥
∫
P0

n∏
i=1

p

p0
(Xi)dΠ(p)

= Π(P0)

∫
P0

n∏
i=1

p

p0
(Xi)

dΠ(p)

Π(P0)

= Π(P0)

∫
P0

n∏
i=1

p

p0
(Xi)dΠ0(p),
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where Π0 is the restriction of Π to P0. Then by Jensen’s inequality applied to concave logarithm
function we have the following,

logDn ≥ log Π(P0) + log

∫
P0

n∏
i=1

p

p0
(Xi)dΠ0(p)

≥ log Π(P0) +

∫
P0

log

n∏
i=1

p

p0
(Xi)dΠ0(p)

= log Π(P0)− n 1

n

n∑
i=1

∫
P0

log
p0

p
(Xi)

Observe that, by Fubini’s theorem and strong law of large numbers

1

n

n∑
i=1

∫
P0

log
p0

p
(Xi)dΠ0(p) →

a.s.
EP0

∫
P0

log
p0

p
(X)dΠ0(p).

The right hand side of the above display is
∫
P0
D(p0 || p)dΠ0(p) which is strictly greater than ε by

definition of P0 . Hence
∫
P0

log
∏n
i=1

p
p0

(Xi)dΠ0(p) > e−nε eventually P∞0 . This gives the following
lower bound for Dn for sufficiently large n,

Dn ≥ Π(P0)e−nε (4)

Step 2. Now we turn our attention to the numerator Nn. The steps we will be following are
very standard in any posterior consistency proof. The idea is to make use of the tests φn which
have exponentially small error probabilities. We have,

Π(Uc | X(n)) = Π(Uc ∩ Pn | X(n)) + Π(Uc ∩ Pcn | X(n))

≤ Π(Uc ∩ Pn | X(n)) + Π(Pcn | X(n))

= T1 + T2,

where the first inequality holds since P (A ∩ B) ≤ P (B). We will now separately analyze T1 and
T2. Note that,

T1 = Π(Uc ∩ Pn | X(n))

= φnΠ(Uc ∩ Pn | X(n)) + (1− φn)Π(Uc ∩ Pn | X(n))

≤ φn + (1− φn)Π(Uc ∩ Pn | X(n))

= T11 + T12.

The expectation of T11 is Pn0 φn ≤ e−Cn by assumption 3. By Markov’s inequality we have for every
positive δ,

∑∞
n=1 P

n
0 (φn > δ) ≤

∑∞
n=1 δ

−1e−Cn < ∞. Hence by the Borel-Cantelli lemma φn → 0

almost surely. (if
∑∞

n=1 P (| Xn −X |> δ) <∞ then Xn
a.s.→ X.)

For the second term, we have the following expression by Bayes theorem,

T12 = (1− φn)Π(Uc ∩ Pn | X(n)) = (1− φn)

∫
Uc∩Pn

∏n
i=1

p
p0

(Xi)dΠ(p)∫ ∏n
i=1

p
p0

(Xi)dΠ(p)
.
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The denominator is Dn and we proved Dn ≥ Π(P0)e−nε eventually almost surely. By assumption
1, Π(P0) is positive. Hence for T2 we need to prove that the numerator times e−nε goes to zero
almost surely. For that we first take expectation and apply Fubini’s theorem,

EPn0

{
(1− φn)

∫
Uc∩Pn

n∏
i=1

p

p0
(Xi)dΠ(p)

}
=

∫ ∫
Uc∩Pn

(1− φn)
n∏
i=1

p

p0
(Xi)p0(Xi)dΠ(p)

=

∫
Uc∩Pn

EPn(1− φn)dΠ(p) ≤ sup
p∈Uc∩Pn

Pn(1− φn)

∫
Uc∪Pn

dΠ(p)

≤ e−Cn Π(Uc ∪ Pn) ≤ e−Cn,

where we used assumption 3 to upper bound supp∈Uc∩Pn Pn(1 − φn) by e−Cn. Then for every

positive δ, by Markov’s inequality,
∑∞

n=1 P
n
0 (T12 > δ) ≤

∑∞
n=1

enεe−Cn

Π(P0) <∞ if ε < C using the fact

that Dn ≥ Π(P0)e−nε eventually almost surely. Thus by Borel-Cantelli, T12 → 0 almost surely.

Step 3. We have, EPn0 (T2) =
∫ ∫
Pcn

∏n
i=1

p
p0

(Xi)p0(Xi)dΠ(p)dXi =
∫
Pcn
dΠ(p) = Π(Pcn) < e−Cn.

Thus
∑∞

n=1 P
n
0 (T2 > δ) <

∑∞
n=1 e

−Cn <∞ by Markov. Therefore, T2 → 0 almost surely.

To see how consistency is proved in special cases see [1]. The authors follow the exact same
steps as discussed here.

3 Tests and metric entropy

In the proof of Schwatrz’s theorem we assumed existence of tests of exponentially small error
probabilities. Question is when do these tests exist. The pioneering theory of minimax testing in
general statistical models was developed back in 1970’s and 80’s by Lucien Le Cam and Lucien
Brigé. Here we just state few results without proof on existence of tests.

Definition 3.1. Let P be a probability measure and Q be a set of probability measures on a measure
space (X ,X). The minimax risk for testing P versus Q is defined by,

π(P,Q) = inf
φ
{Pφ+ sup

Q∈Q
Q(1− φ)},

where φ is a measurable test function φ : X → [0, 1] and the infimum is taken over all such φ’s.

Let conv(Q) denote the convex hull of Q, i.e. conv(Q) contains all probability measures of the
form

∑k
i=1 ω1Qi,

∑k
i=1 ωi = 1, k ∈ N.

Theorem 3.2.
π(P,Q) = 1− || P − conv(Q) ||TV≤ sup

Q∈conv(Q)
ρ1/2(p, q),

where ρ1/2(p, q) = 1 − 1
2h

2(p, q) is the Hellinger affinity between p and q. Here p and q are the
densities of P and Q relative some common dominating measure.

In view of the above theorem, when computing minimax testing error probabilities it is enough
to consider the convex hull conv(Q).
Fact: Let Q be a convex set of probability measures. Let Pn and Qn be n-fold product measures
for every Q ∈ Q. Then we have the following,

π(Pn,Qn) ≤ ρ1/2(P,Q)n

.

5



Theorem 3.3. For any probability measure P and convex set of probability (dominated) measures
Q with h(p, q) > ε for every q ∈ Q and any n ∈ N, there exists a test φ such that,

Pnφ ≤ e−nε2/2, sup
Q∈Q

Qn(1− φ) ≤ e−nε2/2.

So the above theorem basically says that it is always possible to construct tests between a
probability measure P and a convex set of probability measures with exponentially small error
probability given that elements of the convex set are strictly ε distance away from P in the Hellinger
sense.

Recall the proof of Schwartz’s theorem. We need to construct tests for Uc which is not convex
in general. However, we can get past this obstacle by following a simple rule. Suppose P is a
set of probability measures. Fix P0, P1 ∈ P. Consider the problem of testing H0 : P = P0 vs
H1 : P ∈ {P : ρ(P, P1) < ρ(P0, P1)/2}. The ball in H1 is in general convex and by the previous
theorem we know that a test exists with small error probability. Now, we can cover P by balls
centered at different points P2, . . . , PN and have a test for each of those balls. We can then combine
all these tests to form a single test for the entire space. The power of this combined test then will
depend on the number of balls needed to cover P. This number has a special name which we are
going to define next. It should also be clear that some control on this number is needed, otherwise
the test will loose power.

In the following we assume (T, ρ) to be a metric space.

Definition 3.4. A δ-cover of a set T with respect to a metric ρ is a set {θ1, . . . , θN} ⊂ T such that
for every θ ∈ T there exists some i ∈ 1, 2, . . . , N such that ρ(θ, θi) ≤ δ. The δ-covering number
N(δ,T, ρ) is the cardinality of the smallest δ-cover.

The number logN(δ,T, ρ) is known as the metric entropy of T with respect to ρ. Essentially,
this measures the size of the set T relative to ρ. Below we include two examples of the behavior of
covering numbers.

Example 3.5. Consider a norm || · || on Rd. Define the unit ball B as B = {x ∈ Rd :|| x ||≤ 1}.
Note that ρ(x, y) =|| x − y || defines a metric on Rd. Hence (B, || · ||) is a valid metric space. It
can be shown that,

logN(δ,B, || · ||) � d log(1/δ).

Example 3.6. Let F = {f(x) : f : [0, 1]→ R, ∀x, y ∈ [0, 1], | f(x)−f(y) |.| x−y |}. The function
class F has a special name, its members are known as 1-Lipschitz functions. It should be observed
that F ⊂ C[0, 1], the set of all continuous functions on [0, 1]. The couplet (B, || · ||∞) is a metric
space where || · ||∞= supx | f(x) |. For this set it is known that,

logN(δ,F , || · ||∞) � 1

δ
.

If instead we consider the d-dimensional analogue of F defined as Fd = {f(x) : f : [0, 1]d →
R,∀x, y ∈ [0, 1]d, | f(x)− f(y) |.|| x− y ||∞} , the corresponding covering number is,

logN(δ,F , || · ||∞) �
(

1

δ

)d
Comparing the covering numbers for B and Fd we can immediately see how the dimension d

appears linearly for B and in the exponent of Fd even in the log scale. The other major difference
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is that the presence of the large number 1/δ (assuming δ to be small) in logN(δ, logFd, || · ||∞),
whereas for logN(δ,B, || · ||), 1/δ only appears through log(1/δ). An excellent reading material on
covering numbers and related topics can be found here.

The next result we state relates the covering number of a set of statistical models P (a set
of probability measures) with metric ρ to existence of certain tests with small error probabilities.
The proof of the theorem can be found in Section 7 of [2]. Suppose we observe the iid data
X1, . . . , Xn | P ∼ P , and let (X (n),X(n)) be the sample space. Here P is some probability measure
in P, the set of all probability measures on (X (n),X(n)). Suppose for a fixed P ∈ P, Pn denote the
product probability measure, Pn = ⊗ni=1Pi = ⊗ni=1P = Pn.

Theorem 3.7. (Theorem 7.1 of [2]) Consider the metric space (P, ρ). Assume ρ is dominated by
the Hellinger metric. Suppose that for some non-increasing function N(ε), some εn ≥ 0 and every
ε > εn,

N (ε/2, {P : ρ(P, P0) ≤ 2ε}, ρ) ≤ N(ε).

Then for every ε > εn there exist tests φn = φn(ε) such that, for a universal constant K and every
j ∈ N,

Pn0 φn ≤ N(ε)
e−Knε

2

1− e−Knε2
, (5)

and
sup

ρ(P,P0)>jε
Pn(1− φn) ≤ e−Knε2j2 . (6)

Proof. For any j ∈ N define Sj = {P : jε < ρ(P, P0) < (j + 1)ε}. Suppose S∗j is a jε/2-cover of
Sj , i.e. S∗j = {Pj1, Pj2, . . . , PjNj} such that for any P ∈ Sj there exists l ∈ 1, . . . , Nj such that
ρ(P, Pjl) < jε/2. Note that Nj is the jε/2 covering number of Sj with respect to the metric ρ which
by assumption of the theorem is bounded above by N(jε). Now fix l ∈ {1, . . . , Nj} and consider
the ball Bjl = {P : ρ(P, Pjl) < jε/2} centered at Pjl. Then by theorem 3.3 there exists a test φjl
for testing H0 : P = P0 vs H1 : P ∈ Bjl such that,

Pn0 φjl ≤ e−nj
2ε2/2,

sup
P∈Bjl

Pn(1− φjl) ≤ e−nj
2ε2/2.

Let us define φj = maxφj1, . . . , φjNj . Finally, let φn = maxφj , φ(j+1), . . . , for any fixed j ∈ N.
Now we will compute the error probabilities of the test φn. Recall that since φjl’s are test functions
they are of the form φjl = 1 ifX(n) ∈ Rjl and 0 otherwise, where Rjl is a subset of X(n). Hence for
any Pn ∈ P, Pnφjl = EPn(φjl) = Pn(X(n) ∈ Rjl). And Pnφj is nothing but Pn(X(n) ∈ ∪lRjl)
and similarly Pnφn = EPn(φn) = Pn(X(n) ∈ ∪j ∪l Rjl). Thus, by the union probability bound
P (∪Ai) ≤

∑
P (Ai) we get,

Pn0 φn = Pn0 (∪j ∪l φjl) ≤
∑
j

∑
l

Pn0 (Rjl) ≤
∑
j

N(jε)e−Knε
2 ≤ N(ε)

∑
j

e−Knε
2

= N(ε)
e−Knε

2

1− e−Knε2
,

where K = 1/2 and N(jε) ≤ N(ε) for any j ∈ N since N(·) is non-increasing by assumption. For
the type-II error, we have for any P ∈ Sj , Pn(1−φj) = Pn(X(n) ∈ ∩lRcjl) ≤ supPn∈∪Bjl P

n(Rcjl) ≤
e−nj

2ε2/2. Thus,

sup
ρ(P,P0)>jε

Pn(1− φn) = sup
P∈∪l>jSl

Pn(1− φn) = sup
P∈∪l>jSl

Pn(1− φl) ≤ sup
l>j

e−nl
2ε2/2 ≤ e−Knj2ε2 .
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In the previous theorem, one possible choice of N(·) can be N (ε,P, ρ), the covering number of
the entire space or a large subset Pn ⊂ P where we will see later that ‘small’ is measured with
respect to the prior measure. See section 7 of [2] for more on tests and metric entropy.

4 Posterior contraction rates

As in section 2 we will restrict our attention to nonparametric problems. Schwartz’s theorem, while
important to understand certain operating characteristics of Bayes procedures in nonparametric
problems, is only asymptotic in nature. In statistical terms, to have a better gauge of the perfor-
mance of a method we look at its convergence rate, i.e. how fast with respect to the sample size
does it converge to the true distribution. For example, in a fixed dimensional parametric model
it is well known that the maximum likelihood estimator has a convergence rate of OP (n−1/2). In
a Bayesian framework however, we are interested in the convergence rate of the entire posterior
distribution. More precisely, if P0 is the true distribution and ρ is our chosen metric on P can
we create a shrinking neighborhood around P0 of radius εn with εn → 0 (note the dependence
of the radius on the sample size n) so that the posterior distribution places most of its mass in
that neighborhood. Let us now define formally what is meant by the convergence rate of posterior
distribution. We will restrict our attention to data which are iid according to some distribution.
Setup. Suppose we observe the iid data X1, . . . , Xn | P ∼ P , where P is some probability measure
in P. Let (X (n),X(n)) be the sample space and P0 ∈ P be the true distribution. Consider the
prior Π on P . Let Πn(· | X(n)) be the posterior distribution obtained by using Bayes theorem.
Assume the metric ρ is dominated by the Hellinger metric (eg. Total variation). Also assume that
the probability measures P ∈ P have a density with respect respect to some common dominating
measure λ.

Definition 4.1. The posterior distribution Πn(· | X(n)) is said to contract at rate εn → 0 at P0 ∈ P
if Πn(P : ρ(P, P0) > Mεn | X(n))→ 0-in Pn0 -probability for some positive constant M .

Note that, if εn is the rate of contraction then every ε̃n such that ε̃n > εn → 0 is a contraction
rate. Naturally, we are interested in the fastest rate possible which is attained for every P0 ∈ P̃,
some subclass of P. If ρ is convex then by a similar argument provided after definition 1.1, we can
see that the posterior mean also converges to P0 at rate εn. Next we state a famous result from [2]
(theorem 2.1) which provides sufficient conditions for the posterior distribution to contract at rate
εn. Consider the setup mentioned previously.

Theorem 4.2. Suppose εn → 0 and nε2n →∞. If for a constant C > 0 and sets Pn ⊂ P, we have,

1. logN(εn,Pn, ρ) ≤ nε2n.

2. Π(Pcn) ≤ e−(C+4)nε2n.

3. Π{p :
∫
p0 log

p0

p
≤ ε2n,

∫
p0 log2 p0

p
≤ ε2n} ≥ e−Cnε

2
n,

then for sufficiently large M , Πn(P : ρ(P, P0) > Mεn | X(n)) → 0 in Pn0 -probability, i.e. the
posterior distribution contracts at P0 at rate εn.

Let us first discuss the conditions of the theorem before going into the proof which we hope
would provide a brief insight into the ideas guiding the proof. It should be noted that the conditions
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are very similar to Schwartz’s theorem. Our main goal here is to show the posterior probability of
the set U = {P : ρ(P, P0) > Mεn} is small i.e.

Πn(U | X(n)) =

∫
U

∏n
i=1

p
p0

(Xi)dΠ(p)∫ ∏n
i=1

p
p0

(Xi)dΠ(p)
:=

Nn

Dn
,

is small. For that to happen, naturally we would want an upper bound on Nn and lower bound

on Dn. Let B = {p :
∫
p0 log

p0

p
≤ ε2n,

∫
p0 log2 p0

p
≤ ε2n} ≥ e−nε

2
n}. This set should be rec-

ognized as a Kullback-Liebler type neighborhood around P0 with an additional condition on the
second moment of the log-likelihood ratio. The denominator Dn as we have seen in the proof
of Schwartz’s theorem, can be lower bounded easily in terms of the prior probability assigned
to B and with the help of the second moment condition we would be able to attach a prob-
ability statement to this lower bound, i.e. we would be able to say that Dn ≥ Π(B)e−nε

2
n

with high probability which is a more precise statement than just saying Dn ≥ D ultimately
for some n ≥ N . However, the expected value of the numerator Nn with respect to Pn0 is,
EPn0

∫
U

∏n
i=1

p
p0

(Xi)dΠ(p) =
∫ ∫

U

∏n
i=1

p
p0

(Xi)dΠ(p)p0(Xi)dXi = Π(U), the prior probability of
the set U by Fubini’s theorem. This means apriori we need to have a very strong idea as to
what P0 is, which in practice we rarely have. To make the numerator small, we would use test
functions to test H0 : P = P0 vs H1 : P ∈ U . Since by assumption ρ is dominated by Hellinger
metric, by theorem 3.7 we have a test with small error probabilities for testing H0 : P = P0 vs
H1 : P ∈ {P : ρ(P, P0) > jεn} for every j ∈ N. For every ε > εn, the type- I error of this test is
bounded above by N(ε)e−Knε

2
/(1 − e−Knε2n). We shall choose N(ε) = N(εn,Pn, ρ), the covering

number of Pn with respect to ρ. The denominator of the error bound is close to 1 since nε2n →∞
and if N(εn) ≤ e−nε

2
n then the error is of the order e−nε

2
n . This is guaranteed by assumption 1.

Finally, like Schwartz’s theorem, we would show that the posterior probability of Pcn is small since
its prior probability is small by assumption 2. We now prove theorem 4.2.

Proof. We will prove the theorem in three steps. In the first step we analyze Dn. Nn is analyzed
in the second step.

Step 1. Let B = {p :
∫
p0 log

p0

p
≤ ε2n,

∫
p0 log2 p0

p
≤ ε2n} ≥ e−nε

2
n}. Similar to step 1 in

the proof of Schwartz’s theorem, we can lower bound Dn as, Dn ≥ Π(B)
∫
B

∏n
i=1

p
p0

(Xi)dΠ0(p)
where Π0 is the restriction of Π on B (replacing P0 by B). Then again using a similar argu-
ment as in the proof of Schwartz’s theorem, logDn ≥ log Π(B) +

∫
B log

∏n
i=1

p
p0

(Xi)dΠ0(p). Let

Z =
∫
B log

∏n
i=1

p
p0

(Xi)dΠ0(p) =
∑n

i=1

∫
B log p

p0
(Xi)dΠ0(p). The expected value of Z under Pn0 is

−n
∫
BD(p0 || p)dΠ0(p) ≥ −nε2n by definition of B. For the variance of Z we have the following due

to independence:

varPn0 (Z) ≤ n varPn0

∫
B

log
p

p0
(X1)dΠ0(p) ≤ nEPn0

(∫
B

log
p

p0
(X1)dΠ0(p)

)2

≤ n
∫
B

(
log

p

p0
(X1)dΠ0(p)

)2

dΠ0(p)

= n

∫
B

(
− log

p0

p
(X1)

)2

dΠ0(p)

= n

∫
B

(
log

p0

p
(X1)

)2

dΠ0(p) ≤ nε2n,
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again by definition of B. Hence,

Pn0 (Z < −2nε2n) = Pn0 (Z − (−nε2n) < −nε2n) ≤ Pn0 (Z − E(Z) < −nε2n) ≤ nε2n
(nε2n)2

.

Thus we have Dn ≥ Π(B)e−2nε2n = e−(C+2)nε2n with Pn0 -probability at least 1− 1/(nε2n).

Step 2. Since N(ε,Pn, ρ) is decreasing in ε, we have for very ε > 2εn,

logN(ε/2,Pn, ρ) ≤ logN(εn,Pn, ρ) ≤ nε2n,

where the last inequality follows from assumption 1. Now we will apply theorem 3.7 with N(ε) =
enε

2
n and ε = Mεn and set j = 1 for some positive constant M to be chosen later. By theorem 3.7

there exists a test φn such that,

Pn0 φn ≤ enε
2
n

e−KnM
2ε2n

1− e−KnM2ε2n
(7)

sup
P∈Pn:ρ(P,P0)>Mεn

Pn(1− φn) ≤ e−KnM2ε2n (8)

Then consider the posterior probability assigned to the set U = {P : ρ(P, P0) > Mεn},

Πn(U | X(n)) =

∫
U

∏n
i=1

p
p0

(Xi)dΠ(p)∫ ∏n
i=1

p
p0

(Xi)dΠ(p)
=
Nn

Dn
,

Suppose An is the event where Dn ≥ e−(C+2)nε2n . Write Πn(U | X(n)) = Πn(U | X(n))IAn + Πn(U |
X(n))IAcn . Then EPn0 Πn(U | X(n)) ≤ EPn0 (Πn(U | X(n))IAn) + EPn0 (IAcn) since Πn(U | X(n)) is a

number between 0 and 1. Thus EPn0 Πn(U | X(n)) ≤ EPn0 (Πn(U | X(n)))IAn + Pn0 (Acn) ≤ Πn(U |
X(n))IAn + 1/(nε2n). Since nε2n → ∞ by assumption, we only need to consider the expected value
of Πn(U | X(n)) inside An. Hence for every X(n) ∈ An ,

EPn0 (Πn(U | X(n))) = EPn0 (Πn(U ∩ Pn | X(n))) + EPn0 (Πn(U ∩ Pcn | X(n)))

≤ EPn0 (Πn(U ∩ Pn | X(n))) + EPn0 (Πn(Pcn | X(n)))

= EPn0 (φnΠn(U ∩ Pn | X(n))) + EPn0 ((1− φn)Πn(U ∩ Pn | X(n))) + EPn0 (Πn(Pcn | X(n)))

≤ EPn0 (φn) + EPn0 ((1− φn)Πn(U ∩ Pn | X(n))) + EPn0 (Πn(Pcn | X(n)))

= T11 + T12 + T2

It is easy to observe that EPn0 (T2) ≤ e−(C+4)nε2n (see step3 of Schwartz’s proof) and EPn0 (T2)→ 0.
If M is such that KM2 − 1 > K then by equation (7),

EPn0 (T11) ≤ e(1−KM2)nε2n

1− e−KnM2ε2n
≤ e−Knε

2
n

1− e−KnM2ε2n
≤ 2e−Knε

2
n .

Finally, EPn0 (T12) ≤ e−KnM
2ε2ne(C+2)nε2n . To see this, first use the lower bound on Dn inside An

and then take expectation of the numerator. The expected value of the numerator is bounded by
supP∈U∩Pn P

n(1 − φn) ≤ e−KnMε2n which follows by equation (8). Then if M ≥
√

(C + 4)/K, we
see that the posterior distribution contracts at the rate εn.
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